Инновационный электротехнический кластер Чувашской Республики Академия электротехнических наук Чувашской Республики Чувашский государственный университет имени И.Н. Ульянова Подкомитет Б5 «Релейная защита и автоматика» Российского национального комитета СИГРЭ

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ ЦИФРОВЫХ СИСТЕМ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ

Материалы научно-технической конференции молодых специалистов форума «РЕЛАВЭКСПО-2021» научно-технической конференции.-Казань: Издательство: Акционерное общество "Казанский научно-исследовательский институт авиационных технологий" (Казань); 2017, с. 239-244

Авторы:

Исаков Руслан Геннадьевич, к.т.н, доцент кафедры ЭО КНИТУ-КАИ. E-mail: ruslanisakov@yandex.ru.

Метелев Иван Сергеевич, старший преподаватель КНИТУ-КАИ. E-mail: ismetelev@kai.ru.

Ференец Анна Андреевна, студентка 4 курса КНИТУ-КАИ. E-mail: a.a.ferenets@icloud.com.

Юдина Ксения Павловна, студентка 4 курса КНИТУ-КАИ. E-mail: Sarachevaksenia@yandex.ru.

ЛОКАЛИЗАЦИЯ ПОВРЕЖДЕНИЙ НА КАБЕЛЬНО-ВОЗДУШНЫХ ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ ДВУХСТОРОННИМ ВОЛНОВЫМ МЕТОДОМ

Христофоров В.А., Чувашский государственный университет им. И.Н. Ульянова, ООО НПП «ЭКРА», г. Чебоксары, Россия.

Фёдоров Александр О., ООО НПП «ЭКРА», г. Чебоксары, Россия.

Петров В.С., Чувашский государственный университет им. И.Н. Ульянова, ООО НПП «ЭКРА», г. Чебоксары, Россия.

Аннотация:

При возникновении короткого замыкания на кабельно-воздушной линии электропередачи (КВЛ) заранее неизвестен поврежденный сегмент. Это не позволяет, даже приняв во внимание разную скорость движения фронта волны на сегментах КВЛ, сразу определить место повреждения.

В настоящем докладе обобщается метод двухстороннего волнового определения места повреждения на КВЛ, основанный на поиске поврежденного сегмента КВЛ и локализации места КЗ на нем. Предлагаемый метод может использоваться на КВЛ любой конфигурации.

Ключевые слова: волновое ОМП, двухсторонний метод, кабельновоздушная ЛЭП

Введение

Расчет места повреждения \hat{m} двухсторонним волновым методом [1] на однородной ЛЭП базируется на неизменности скорости движения фронта волны ν на всем контролируемом участке длиной L:

$$\hat{m} = \frac{1}{2} \left[L + (\hat{t}_1 - \hat{t}_2) v \right], \tag{1}$$

где $\hat{t_1}$ и $\hat{t_2}$ – оценки времен возникновения фронтов волн на концах контролируемой ЛЭП.

Определение места повреждения (ОМП) (1) на кабельновоздушных ЛЭП (КВЛ) встречает следующие сложности: каждому сегменту КВЛ характерна своя скорость движется фронта волны (рис. 1) и поврежденный сегмент заранее неизвестен.

В настоящем докладе обобщается метод двухстороннего волнового ОМП на КВЛ.

Основная часть

При КЗ на КВЛ заранее неизвестен поврежденный сегмент. В связи с чем даже если учесть разную скорость движения фронта волны на сегментах КВЛ это не позволяет аналогично (1) сразу определить место повреждения.

Очевидно, что расчет ОМП на КВЛ должен начинаться с идентификации поврежденного сегмента [2]. Для этого сначала формируются оценки времен возникновения фронтов волн на концах КВЛ при КЗ на *b*-ом сегменте (рис. 1):

$$\begin{cases}
\hat{t}_{1} = t_{0} + \sum_{i=1, b \neq 1}^{b-1} \frac{L_{i}}{v_{i}} + \frac{\hat{m} - \sum_{i=1, b \neq 1}^{b-1} L_{i}}{v_{b}}, \\
\hat{t}_{2} = t_{0} + \frac{\sum_{i=1}^{b} L_{i} - \hat{m}}{v_{b}} + \sum_{i=b+1}^{n} \frac{L_{i}}{v_{i}},
\end{cases} (2)$$

где t_0 — время возникновения КЗ; L_i , v_i — длина и скорость распространения фронта волны на i-ом сегменте; n — количество сегментов КВЛ.

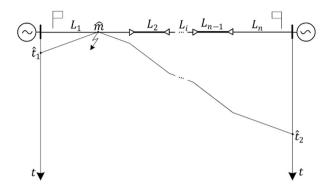


Рис. 1. Диаграмма Бьюли, поясняющая распространение волн по КВЛ

После чего, решая систему (2), можно получить предполагаемые места повреждений:

$$\hat{m} = \frac{v_b}{2} \left[\hat{t}_1 - \hat{t}_2 - \sum_{i=1, b \neq 1}^{b-1} \frac{L_i}{v_i} + \frac{1}{v_b} \left(\sum_{i=1, b \neq 1}^{b-1} L_i \right) + \frac{1}{v_b} \left(\sum_{i=1}^{b} L_i \right) + \sum_{i=b+1}^{n} \frac{L_i}{v_i} \right],$$
(3)

где b = 1, n.

За поврежденный сегмент b принимается тот, для предполагаемого места повреждения \hat{m} которого выполняется неравенство:

$$\sum_{i=1}^{b-1} L_i \le \hat{m} < \sum_{i=1}^{b} L_i. \tag{4}$$

Следовательно, за истинное место повреждения принимается предполагаемое место повреждения \hat{m} , соответствующее поврежденному сегменту (4).

Выводы

В настоящей работе обобщен двухсторонний волновой метод определения места повреждения на кабельно-воздушных ЛЭП. Предложенный метод может использоваться на ЛЭП любой конфигурации.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. Fedorov, V. Petrov, O. Afanasieva and I. Zlobina, "Limitations of Traveling Wave Fault Location," 2020 Ural Smart Energy Conference (USEC), Ekaterinburg, 2020, pp. 21-25, DOI: 10.1109/USEC50097.2020.9281153.
- 2. S. Marx, Y. Tong and M.V. Mynam, "Traveling-Wave Fault Locating for Multiterminal and Hybrid Transmission Lines", 45th Annual Western Protective Relay Conference Spokane, October 16–18, 2018.

Авторы:

Христофоров Виталий Андреевич, техник департамента автоматизации энергосистем ООО НПП «ЭКРА», студент факультета энергетики и электротехники ЧГУ им. И.Н. Ульянова по направлению «Релейная защита и автоматизация электроэнергетических систем». E-mail: hristoforov_va@ekra.ru.

Фёдоров Александр Олегович, окончил в 2020 г. факультет энергетики и электротехники ЧГУ им. И.Н. Ульянова, получил степень магистра по направлению «Электроэнергетические системы, сети, электропередачи, их режимы, устойчивость и надежность». Инженер-исследователь 3 категории департамента автоматизации энергосистем ООО НПП «ЭКРА». E-mail: fedorov ao@ekra.ru.

Петров Владимир Сергеевич, сведения об авторе приведены на стр. 33.

ЛОКАЛИЗАЦИЯ ФРОНТА ВОЛНЫ В СИГНАЛЕ

Егоров В.А., ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова, Чебоксары, Россия. E-mail: egorov_va@ekra.ru.

Фёдоров Алексей О., ООО НПП «ЭКРА», Россия. E-mail: fedorov a@ekra.ru.

Петров В.С., ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова, Чебоксары, Россия. E-mail: petrov_vs@ekra.ru.

Антонов В.И., ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова, Чебоксары, Россия. E-mail: antonov_vi@ekra.ru.

Наумов В.А., ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова, Чебоксары, Россия. E-mail: naumov_va@ekra.ru.

Аннотация: Решение задачи определения места повреждения волновым методом требует локализации фронтов волн во входном сигнале для оценки моментов их возникновения. В настоящей работе предлагается новый способ локализации фронтов волн с